DFS

dfs是非常重要的算法解决方式,常用于解决有多次选择,每次都依赖于上一次的选择而有限定的问题。并且一般是需要你列出所有的可能性。

例如排列组合问题,给n个值,求出所有排列可能性,求出所有组合的可能性。

这就是非常经典的dfs。一般的思路是,先用一个数组记录每个元素的个数。然后为第一个位置选择元素,有n种选择,然后每种里面需要为第二个位置选择元素,此时有n-1种选择,因为记录元素个数的那个里面第一个元素对应的个数少了1。依次类推就有n!个排列方式。

function f(arr){
    var count={}
    for(var i=0;i<arr.length;i++){
        count[arr[i]]=count[arr[i]]?count[arr[i]]+1:1
    }
    var len =arr.length;
    // 记录数组中所有元素 用两个数组 一个记录元素,一个记录个数
    var ele = Object.keys(count)
    var cos = Object.values(count)
    var res=[]
    console.log(ele,cos,res)
    dfs([],res,ele,cos,0,len)
    return res
}
function dfs(list,res,ele,cos,index,len){
    if(index==len){
        res.push(Object.assign([],list))//注意深拷贝
    }else{
        for(var i=0;i<ele.length;i++){
            if(cos[i]>0){
                list.push(ele[i])
                cos[i]--;
                dfs(list,res,ele,cos,index+1,len)
                list.pop();
                cos[i]++;
            }   
        }
    }
}
/*

我们再来看组合的dfs,组合和排列不同的在于

1 组合不需要选出所有元素,可能是k个(k小于总个数)所以代码的截止条件换为`index==len`中参数len换成k。

2 不同顺序的排列是同一种组合如1,2和2,1是同一种,所以可以按照从小到大的顺序筛选,即index是i的数字,一定大于i-1。所以代码的筛选条件添加一条`if(list.length>0&&ele[i]<list[list.length-1])continue;`
*/

能否抽象成选择问题是判断是否能用DFS的关键

DFS是对多叉树的遍历,每一层其实都是代表一个选择。如排列问题,可以抽象成每个坑位的选择。再比如IP问题,是每个IP段的选择。

DFS代码三个基本点

只要找到了这三个基本点,代码写起来就简单了。

经典题目

1 数组中,列出任意多元素和为target的可能。例如[1,2,3,5]target=6有111111,222,33,123,15这些可能
dfs 除了图上注意的点,这里还要强调两点,一个是dfs的参数,一般有一个记录中间结果的list是必须的,有些参数是一直不变的,如这里的原始数组。另外有时候会有level参数,表示现在是第几层,这里不需要层数,因为不限制数的个数。

2 同第一题,只不过数组中可能有重复数字且数组中每个数字最多用一次
dfs

3 IP字符串种类,如25525511135有两种255.255.11.135和255.255.111.35
dfs

4 字符串s,切割后每一段必须是回文,求切割方式 例如aab,切割方式有[aa,b],[a,a,b]
dfs